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Steady-State and Transient Boundary Element Methods

for Coupled Heat Conduction

Dean A. Kontinos

Ames Research Center

Summary

Boundary element algorithms for the solution of steady-state and transient heat conduction are

presented. The algorithms are designed for efficient coupling with computational fluid dynamic

discretizations and feature piecewise linear elements with offset nodal points. The steady-state

algorithm employs the fundamental solution approach; the integration kernels are computed analyti-

cally based on linear shape functions, linear elements, and variably offset nodal points. The analytic

expressions for both singular and nonsingular integrands are presented. The transient algorithm

employs the transient fundamental solution; the temporal integration is performed analytically and

the nonsingular spatial integration is performed numerically using Gaussian quadrature. A series

solution to the integration is derived for the instance of a singular integrand. The boundary-only

character of the algorithm is maintained by integrating the influence coefficients from initial time.

Numerical results are compared to analytical solutions to verify the current boundary element

algorithms. The steady-state and transient algorithms are numerically shown to be second-order

accurate in space and time, respectively.

1 Introduction

Computational science is advancing dramatically in these first decades of the Information Age.

Performance gains in computer technology are propelling scientific computing to the forefront of the

engineering process. Increasing processor speed is promoting greater fidelity of the physical models,

and increases in memory are permitting finer resolution of the physical domain. Simulations, once

impossible to perform in a timely fashion, are routinely computed using desktop workstations.

Furthermore, computational mQdeling is extending into every theatre of engineering, for example,

fluid dynamics, acoustics, heat transfer, chemistry, astrophysics, and structural mechanics.

Although the maturing numerical methodology is applicable across the engineering spectrum,

much of the development is compartmentalized into the separate disciplines. For example, in the

aerospace industry, computational fluid dynamics (CFD) simulations performed in the aerodynamics

or propulsion group are passed, sometimes blindly, as a load condition to the structures group

wherein a structural dynamic simulation is computed. To bridge this gap, the latest effort in compu-

tational science is coupling analysis codes across disciplines. This effort is a natural path of develop-

ment, but, more importantly, it is being driven by engineering systems whose complexity dictates a

coupled analysis. For instance, in the silicon chip fabrication industry, accurate simulation of



chemicalvapordepositionandchemicaletchingrequiresmodelingof thefluid dynamicsin the
reactorcoupledto asurfacechemistrymodel.In theaerospacefield, advancedhypersonicconcepts
blendthepropulsionsystemwith thebodymoldline, therebyblurring thetraditionalindustry
demarcationsof aerodynamics,propulsion,andstructure.Also,metallic thermalprotectionpanels
arebeing implementedfor thenewreusablelaunchvehicle.Becauseof aerodynamicheating,the
panelsexpandfrom thestructureandalterthehypersonicflow field.Analysisof thethermalprotec-
tion systemrequirescouplingof theaerothermodynamicsto thestructuralresponse.It is in this arena
of coupledCFDto structuralanalysisthatthediscussionis focused.

Two basicapproachesareusedto solvecoupledfluid/structuralsystems.Thefirst is a direct
couplingwherethesolutionof thedifferent fieldsis solvedsimultaneouslyin onelargesystemof
equations.Direct coupling is mostlyapplicablefor problemswheretime accuracyis critical, suchas
in aeroelasticitywherethetimescaleof thefluid motionis onthesameorderasthestructuralmodal
frequency.Thesecondapproachis a loosecouplingstrategywhereeachsetof field equationsis
solvedto produceboundaryconditionsfor theother.Theequationsaresolvedin turnuntil an
iteratedconvergencecriterion is metatthefluid/solidinterface.It is notwithin thescopeof this
paper,nor in theexpertiseof theauthor,to presentacomprehensiveliteraryreview of coupledCFD-
structuraldynamicmethods.Instead,reference1is recommended,whereinabrief bibliographyand
acoupledsimulationis given.

Theloosecouplingstrategyis particularlyattractivewhencouplingsolidmechanicsto
hypersonicCFD.Thetime scalesof thehypersonicflow field areoftendisparatefrom thetime
scalesof thestructure,therebyobviatingadirectlycoupledtime-accurateanalysis.Furthermore,
high-speedflows arerepletewith complexphysicalphenomenasuchasshockwaves,shock-wave/
boundary-layerinteractions,chemicalreactions,andinternalenergyexchange.Thenumericsfor
hypersonicalgorithmsaresophisticatedand,attimes,temperamental.Adding structuralequations
to thesystemmaydiminish therobustnessof thecraftedhypersonicCFDcode.Thus,the loose
coupling strategyeffectivelyshieldstheCFDcodefrom performancedegradationwhile increasing
thefidelity of theglobalsimulation.

In theaerospaceindustry,finite elementandfinite differencemethodsareroutinelyusedfor the
solutionof solid heatconductionandelasticity.Well proven,thesemethodsarereadilyavailablefor
loosecouplingwith aCFDcode.A thirdoption,rarelyusedin theaerospacecommunity,is the
boundaryelementmethod(BEM).Li andKassab(refs.2 and3) haveefficiently solvedjoint fluid
andstructuralheatingby couplingCFDto theBEM solutionof theconductionin thebody.The
advantageof theBEM overafinite differenceor finiteelementformulationis that only theboundary
is discretized,andthusthedimensionalityof theproblemis reduced.As aresult,it is naturally
coupledwith CFD. Theboundaryelementgrid is simplytheCFDgrid atthefluid/surfaceinterface
plus additionalgrid pointsdefiningtheboundariesof thebody.Theinteriorof thedomainis not
discretized.This reductionin dimensionalityisespeciallyadvantageouswhencouplingto CFD
becauseinterior valuesaresuperfluous;only surfacevaluesarerequiredfor coupling.Consequently,
theBEM is potentiallymoreefficientthanfinite differenceor finite elementmethodswhichrequire
aninterior discretizationto producesurfaceconditions.UsingtheBEM, thetemperaturecanbe
computedat anydesiredinteriorpoint throughcontourintegralsover theboundarysolution. In
summary,advantagesof theBEM area reductionof dimensionality,easeof discretization,and
efficient couplingwith CFD.
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Nomenclature

boundary element method

computational fluid dynamics

distance function coefficients

integration coefficients

nodal offset values

domain view factor at source point

heat capacity coefficient

coefficients

vector matrix containing domain integration coefficients

internal energy per unit volume

total energy per unit volume

arbitrary function

matrices containing influence coefficients

Heaviside function

steady-state component integrals

transient component integrals

tensor thermal conductivity

scalar thermal conductivity

length of linear element

outward unit normal

position vector to the point source

vector matrix containing nodal temperature gradients

temperature gradient boundary condition

heat flux in index notation

position vector to arbitrary point in the domain

distance from source point to point in domain

vector from source point to point in domain



S

T

T

"6

T"

xj
To

t

tf

to

U

uj, u k

V

W

W,W

W $S

W tr

x,y

xj

F

6

E

7?

,;l., O,

P

T

surface

temperature

temperature boundary condition

numerical approximation of the temperature

numerical approximation of the temperature defined by equations (3.1 la) or (4. lOa)

initial temperature

perturbation temperature

vector matrix containing nodal temperature

reference temperature

time

final time

initial time

dummy integration variable

velocity in index notation

volume

domain weight function

boundary weight functions

fundamental solution for steady-state conduction

fundamental solution for transient conduction

spatial coordinates

spatial coordinates in index notation

thermal diffusivity

domain boundary

integration limit

Dirac delta function

error residual

transformed temporal coordinate

polar transform variables

transformed spatial coordinate

solid density

time
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¢I_j k

Zi

O9

Subscripts

e

i,j,k,m

P

q

F

f_

Superscripts

ss

tr

viscous dissipation in index notation

solution variable interpolation function

local transformed temporal coordinate

domain

parameter, defined by equation (3.33)

denotes element

indices

denotes source point

denotes node point

denotes boundary

denotes domain

denotes steady-state

denotes transient
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This paper presents BEM algorithms for two-dimensional, steady-state and transient, heat

conduction. The algorithms are specifically designed for efficient coupling with CFD. The presen-
tation includes a brief tutorial on the BEM for those unfamiliar with the technique. Then the details

of the current algorithms are presented. The mathematics are overly detailed because the paper is

intended as a technical reference manual to document the algorithms. The document is organized as

follows: The governing equation of heat conduction is given in Chapter 2, the steady-state algorithm

with numerical examples in Chapter 3, and the transient algorithm with numerical examples in

Chapter 4.

2 Governing Equations

Consider a material volume in space with no internal heat generation. Applying the conservation

of energy, the time rate of change of the volumetric internal energy is equal to the net flux of energy

through the bounding surface; in index notation, this relation is

3
-_ Iet dV+ I(etuj+_jkUk+qj)njdS=O

Volume Surface

(2.1)

where et is the total energy per unit volume, uj is the velocity of the particles, dPjk is the viscous

dissipation, qj is the heat flux, nj is the outward unit normal, and t is time. In a solid, the material
velocity is zero; therefore, the convection and viscous dissipation terms are zero. Furthermore,

since the kinetic energy is zero, the total energy comprises only the internal mode. Applying the

Divergence Theorem, equation (2.1) becomes

-_ e dV + _ dV=O
Volume Volume

(2.2)

where e is the internal energy and xj are the independent spatial variables. Expressions for the

internal energy and the heat flux are now established. The internal energy of a solid is empirically

determined through the heat capacity, denoted as c, defined as the change in heat content of the solid

per change in degree of temperature. In general, c is determined experimentally over a range of

temperatures. The relation is

1 de
c - (2.3)

p dT

The internal energy is found by integrating cdT from a given reference temperature, T0, to the

temperature of interest,

T

e = p I c dT (2.4)

ro
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If c is independent of temperature, then the internal energy simplifies to

e=pcT (2.5)

In general, the heat flux comprises radiative and conductive terms. Neglecting radiation, the heat

flux is given by Fourier's law, which states that the conductive flux is proportional to the tempera-

ture gradient. In index notation, Fourier's law is

qk = -Kjk "_j (2.6)

where Kjk is the thermal conductivity. In general, the thermal conductivity is a tensor quantity that
is a function of position, direction, and temperature. For this analysis, however, the thermal conduc-

tivity is considered to be a scalar quantity denoted as ks. Thus, modifying equation (2.6) for scalar

conductivity and substituting equations (2.5) and (2.6), the energy conservation law (eq. (2.2)),

becomes

0T _9
dV = 0 (2.7)

In equation (2.7), the time derivative is pulled inside the volume integral; this operation is valid as

long as the limits of integration are time independent, i.e., the domain is fixed. Letting the volume

shrink to zero, the differential form of the heat conduction equation is derived as

0T
m-g =v.(ksV:r) (2.8)

For a constant thermal conductivity equation (2.8) reduces to

o_ = aV2T (2.9)
&

where c_ = ks/(Pc) is the thermal diffusivity. At the steady state, the time derivative of temperature

is zero and the heat conduction equation reduces to Laplace's equation, given as

V2T = 0 (2.10)

In summary, the transient heat conduction equation given by equation (2.8) is valid for a solid

material with a constant c. Further simplification of a constant scalar conductivity yields equa-

tion (2.9), which is the transient conduction equation expressed in terms of the thermal diffusivity.

Finally, in the steady state, equation (2.9) reduces to Laplace's equation, given by equation (2.10).

4



3 Steady-State Boundary Element Algorithm

This section develops the boundary element procedure for solving steady-state heat conduction.

For completeness, a derivation of the boundary integral equation is presented. The presentation is

self-contained, yet is only cursory in detail. Definitive presentations on the BEM are found in

references 4 through 6. Regardless of the potential insufficiencies, the derivation of the boundary

integral equation is presented through weighted residual analysis. Next, the weight function, which

appears in the boundary integral equation as the kernel of an integral transform, is chosen to be

Green's free space solution to the governing equation. The free space solution and its directional

derivative are specified in this section. Then, shape functions are presented for a linear distribution

of the dependent variables over linear boundary elements with offset nodes. Analytic expressions for

the integral transforms are given for both singular and nonsingular integrands. Finally, test cases are

presented.

3.1 The Boundary Integral Equation

The core of the boundary element method is the boundary integral equation. Equation (2.10) is

the starting point for the derivation of the boundary integral equation for steady-state heat conduc-

tion. The derivation is presented through the perspective of a weighted residual analysis based upon

presentations in references 4 and 6. Let f2 be the solid domain with boundary F upon which

equation (2.10) is valid. Furthermore, let the boundary be divided into two parts, F 1 and F 2, for

which the following boundary conditions apply:

T= Ton F 1 (3.1a)

_- = g on F2 (3.1b)

Further subdivision of the boundary does not enhance the validity of the derivation; it only adds to

the complexity of the algebra.

The goal of any numerical approximation is to minimize the error in the satisfaction of the

governing equation and the boundary conditions. Frequently, the numerical scheme is designed to

satisfy the boundary conditions exactly, and the error is minimized on the interior. For this deriva-

tion, however, the strict enforcement of the boundary condition is relaxed; the numerical scheme is

constructed to minimize the error over the domain and the boundary. Let i? represent the numerical

approximation to T, and let e be the error residual. Over the domain and boundary, the error is

given by

_ = V2T (3.2a)

eF_ = 7_ - V (3.2b)
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- _ (3.2c)er2 = &

In weighted residual analysis, the error residuals are multiplied by weight functions and integrated

over the domain and boundary to measure the global error. The weight functions can be viewed as

error distribution functions whose choice determines the type of numerical approximation. For

example, the method of Galerkin is obtained by choosing the weight functions from the same class
of functions used to describe 7_. An instructive presentation of the weighted residual approach and

its connection to finite difference, finite element, and least-squares techniques is given in refer-

ence 6. The weighted residual expression based on the error residuals of equations (3.2) is given as

j" ef2W d_ + [ eFl W" dl" + _ £:F2W dl-" = 0

rl rE

(3.3)

m

where W is the weight function over the domain and W and W are the weight functions over the

boundary. Substituting in the residual expressions of equations (3.2) yields

F1

(3.4)

The boundary integral equation is derived by manipulating the domain integral and judiciously

choosing the weight functions. From the weighted residual perspective, the steps of the derivation

appear prescient in their introduction; indeed, the source of the foreknowledge is the original

formulation from reciprocity considerations. Rizzo (ref. 7) presents an interesting and informative

historical view of the boundary integral technique wherein the derivation is far more deductive

than that presented herein. Nevertheless, the focus is on transforming the domain integral of equa-

tion (3.4) into a more convenient form. This transformation is accomplished by applying Green's

identity to the domain integral to reduce the order of the operator on the temperature field. The

relation is given by

j w vw.vfd.+ j"wv¢. er
f2 f2 F

(3.5)

Substitution of equation (3.5) for the domain integral of equation (3.4) produces the weak form

of the residual statement, which is the basis of the finite element method. In the weak form, the

weight function is symmetric to the numerical solution and, depending on the choice of the weight

function, frequently gives rise to symmetric matrices. To produce the boundary integral equation,

Green's identity is applied a second time to transfer the Laplacian operator to the weight function.

Transposing the role of T and W, equation (3.5) is rearranged to yield

j vw. v: d. = j v w,t. +j ¢vw., 
_ F

(3.6)



Successive substitution of equations (3.6) and (3.5) into equation (3.4) yields

F2

(3.7)

By consecutive application of Green's identity, the Laplacian operator in the domain integral has
been transferred from the numerical solution to the weight function. This formulation is termed the

inverse problem, and upon its derivation, attention is turned to the weight functions.

Up to this point, the only limiting assumption is that the weight function, W, must be twice

differentiable in order to apply Green's theorem consecutively. There is complete freedom in

selecting the boundary weights; they are chosen such that

-- 0w
W = --_-on F1 (3.8a)

W = -W on F 2 (3.8b)

Substituting equations (3.8) into equation (3.7) and noting the cancellations in the boundary integrals

results in

£-2 F 2 F1 F1 F2

(3.9)

By consolidating the notation, the boundary integrals can be simplified to yield

%- arC+
f_ F F

(3.10)

where

If? over f2 and on F2
f=LTon rl

gonF2

It is instructive to review the steps leading to equation (3.10). First, a weighted residual statement

is written with separate weight functions for the boundaries and the domain. Green's theorem is

applied to yield the inverse problem shown in equation (3.7). Then the boundary weight functions

(3.1 la)

(3.1 lb)



are selected in terms of the interior weight function to produce cancellation in the boundary

integrals. Finally, a judicious variable change simplifies the integral equation.

The remaining task is the selection of the weight function; a profitable choice is Green's free

space solution to the governing equation. Green's function is a fundamental solution to the govern-

ing equation subject to a unit impulse forcing function. The fundamental solution for steady-state

conduction, denoted by W ss, satisfies

V2wss = a(_l - _) (3.12)

where S is the Dirac delta function, ,?/is a position vector to any point in the domain, and _ is the

position vector to the point source. The precise mathematical definition of the Dirac function is

ambiguous, but its critical property is that, for a function F(x), the integral of the product of

F(x)_(x - x O) satisfies

_F(x) O(x-xo)df_=F(x O)
(3.13)

In some presentations, the Dirac function is defined by equation (3.13), and in some instances,

equation (3.13) is a property of the definition; a more extensive discussion of the Dirac function is

given in reference 8. In any case, the operation of the Dirac function in lieu of V2W ss in the domain

integral isolates the value of the temperature at the source point. The domain integral is effectively

eliminated. The boundary integral equation becomes

F F

(3.14)

where Tp is the numerical approximation of the temperature at the source point p. The coefficient

Cp is a function of the included angle exposed to the interior at the source point. Details of the

derivation of Cp are given in reference 4.

The boundary integral equation is the core of the boundary element method. By choosing the

fundamental solution as the weight function, domain integration has been eliminated; observe from

equation (3.14) that only boundary integrals appear. The result of this development is a numerical

procedure where the nodal points are located only on the boundary. The boundary-only character
stands in contrast to finite difference or finite element techniques that require a complete domain

discretization; the benefit is a reduction in dimensionality. Furthermore, with the BEM any subset

of the interior solution can be calculated to any desired resolution based on the computed boundary

solution.

The general outline of the BEM is as follows: The boundary is discretized into elements that can

be of any shape, but typically are polynomials as in finite element procedures. The solution variables

are assigned an interpolation function based on nodal points distributed over the element. The inter-

polation function defines the distribution of the solution variable over the element. Originating at the



sourcepoint, thefundamentalsolutionandits directionalderivativearekernelsof anintegral
transformof theprescribedinterpolationfunctions.After dividing theboundaryinto elements,the
boundaryintegralequationbecomes

3WSS __-2 f + WSS --0
eF e eF e

(3.15)

where e denotes an individual element, so Te and o'_e/On denote the distribution of the dependent

variables over element e. Typically, the integrals are computed numerically using Gaussian

quadrature.

Equation (3.15) is written for each node to form a system of linear equations. The system is

expressed in matrix notation as

HjkTj + GjkQj = 0
(3.16)

where Tj and Qj are vectors containing the nodal temperatures and temperature gradients,

respectively, and l-Ijk and Gjk are matrices containing the influence coefficients resulting from
the integral transform. After segregating the known and unknown dependent variables based on the

boundary conditions, the linear system is solved to yield the complete solution on the boundary.

The algorithms presented in this paper employ Gaussian elimination with partial pivoting for direct

inversion of the system matrix. To compute the interior solution, equation (3.15) is applied with the

source point located at the interior point of interest. Since the solution on the boundary is completely

known, the boundary integrals are computed directly without a matrix inversion.

The remaining ingredients of the numerical recipe are the definition of the fundamental solution

and its derivative, the geometrical definition of the boundary element, and the prescription of the

approximating interpolation function to the unknown solution variables T and O7"/On. The combi-

nation of these ingredients differentiates particular boundary element algorithms. The algorithms

presented here are specifically designed for efficient coupling with a CFD flow solver. Serendipi-

tously, an analytic solution of the integral transforms is achieved with the chosen combination of

ingredients.

3.2 Fundamental Solution for Two-Dimensional, Steady-State Heat Conduction

The fundamental solution for the two-dimensional Laplace's equation is given by

wSs=_l in1 (3.17)
2zr r

where r is the distance from the source point to a point in the domain; it is expressed as

r = I1 11= - (3.1 S)



Thedirectionalderivativeis givenas

tgW ss 1 ?eh

oan 2 _r r 2
(3.19)

Both the fundamental solution and its derivative are singular at r = 0, so care must be taken when

integrating near or through the source point.

3.3 Element Shape Function

The next ingredient to the numerical recipe is the definition of the boundary element shape. The

element shape is distinct from and prescribed independently of the dependent variable distribution.

The element shape is a geometrical attribute that determines the distance function, the outward

normal, and the integration path of the contour integrals. On the other hand, the dependent variable

interpolation function defines the distribution of the dependent variables over the element. The two

functions are constrained differently; the element shape is determined by the physical domain,

whereas the interpolation function is governed by the variation of the solution over the boundary.

The two functions combine to determine the accuracy of the algorithm. The element shape function

is given in this section while the variable interpolation function is described in the next.

This boundary element algorithm is specifically designed for coupling with CFD codes that

employ finite difference or finite volume techniques. For both structured and unstructured grids,

these CFD techniques assume linear segments between grid points. Thus, linear boundary elements

are selected in order to ensure one-to-one correspondence of the boundary element grid to the CFD

grid. With linear elements, conservation is easily satisfied since interpolation is not required to mate

the two domains. Furthermore, employing linear boundary elements creates two simplifications.

First, the distance function, r, is prescribed analytically between any arbitrary point and line seg-

ment. Second, the outward unit normal to a linear element remains constant; consequently, _ • r/,

which arises from the directional derivative of the fundamental solution, is pulled out of the

integration. These simplifications allow analytic solution of the integral transforms.

The component expressions for r and ? • h for a linear element are now presented. In two-

dimensional space, the source point can be oriented with respect to a linear segment in one of three

possible ways. Each orientation results in a different analytic expression and is addressed separately.

In Orientation 1, the source point is not collinear with the line segment; thus, _ • h _: 0. For Orien-

tation 2, the source point and element are collinear but the source point does not lie on the segment

itself. Finally, in Orientation 3, the source point lies on the element; thus, the element contains an

integrable singularity. In both Orientations 2 and 3, _ • h = O.

3.3.1 Orientation 1 Distance Function- Figure 1 displays the notation and schematic of a source

point and linear boundary element in Orientation 1; ? is the position vector from the source point to

a point on the element; F12 is the position vector from the first point of the line segment to the end

point; and rpl is the position vector from the source point to the first point of the line segment. The
element is mapped into a linear segment of unit length through the transformation

10



(x2, Y2)

J, Yl)

Fpl \ \

(xp, yp)

Figure 1. Source point and linear boundary element segment in Orientation 1.

X = x 1 +_(X 2 -X 1)

Y = Yl + _(Y2 - Yl)

where (x 1,Yl ) and (x 2, Y2 ) are the start and end coordinates, respectively, of the line segment

defining the element, and _ is the transform variable with range 0 < _ < 1. The square of the

distance function varies as a quadratic function of the transform variable according to

r 2 =ror =A+B_+C_ 2

(3.20a)

(3.20b)

(3.21)

where

A= rpl " Fpl

B = 2Fpl • r12

C = _12 " r12

(3.22a)

(3.22b)

(3.22c)

The coefficients A, B, and C are solely functions of the geometry; they attain different values for

each element and source point combination.

11



The magnitude of the dot product of the position vector and the element outward unit normal can

be expressed in terms of the distance function coefficients as

17• hi = _ (3.23)

where

Q = 4AC- B 2 (3.24)

By ordering the elements in a counterclockwise fashion by convention, the sign of the dot product is

determined by

sign(? • h) = sign(_pl x _12) (3.25)

Note that the dot product becomes zero when Q is zero.

3.3.2 Orientation 2 Distance Function- In Orientation 2, the source point is collinear with the

element. As will be shown later, the analytic expressions of the integration become undefined when

the source point and line segment are collinear, i.e., when Q = 0. This degeneracy is avoided by

redefining the distance function. Since the source point and element are collinear, the location of the

source point can be expressed in terms of the element transform variable _. Let _p be the position

of the source point. Recall that the element is defined over the range 0 < _ < 1 ; thus, if 0 < _p < 1,

then the source point lies on the line segment resulting in Orientation 3. In Orientation 2, the source

lies off the element, so _p > 1 or _p < 0. In either case, _p is determined as

-B

_p = -_ (3.26)

The distance function becomes

_/-__ _r_ for _p > 1

r = _/-_ + ¢_/-_ for _p < 0
(3.27)

3.3.3 Orientation 3 Distance Function- In the third orientation, the source point lies on the

element and hence the integral transform is singular at a point along the path of integration. Never-

theless, the integral transform exists in the Cauchy principle value sense. In order to compute the

principle value, it is convenient to set the origin of the transform variable at the source point. Such

a transformation is dependent on the location of the source point with respect to the grid points;

consequently, it is dependent on the solution variable shape function. Therefore, the discussion of

the distance function for Orientation 3 is delayed until after the presentation of the solution variable

interpolation function in the next section.
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3.4 Solution Variable Interpolation Function

The final ingredient of the numerical recipe is the dependent variable interPOlation function.

Barring an algorithm designed for a specific application, it is common to set the interpolation
function to the same order as the element shape because, in general, the least accurate function will

constrain the global accuracy. Thus, the distribution of the solution variables is selected to be linear.

Two node points are required on each element to properly define a linear distribution. Normally in

finite difference and finite element methods the node points are coincident with the grid points or,

in other words, the node points are located at the ends of the linear element. For piecewise linear

segments, however, the element normal direction will most likely change discontinuously from one

element to the next. Consequently, when the nodal points are coincident with the grid points, the

node normal direction, which is used to define cgT/On, becomes nonunique at the node. There are

procedures to account for this effect, which amount to substituting an auxiliary equation when

relating the upstream and downstream temperature gradients of a particular grid-node point (for

example, see ref. 9). In the present work, the node points are variably offset from the ends of the line

segment. The placement of the node away from the grid point uniquely defines the element normal
at the node. The drawback of the offsetting strategy is an increase in the number of nodes since, in

general, two unique nodes per element are required, whereas a node located at the grid point is

common to the two adjoining elements. This offsetting procedure is not required in all circum-

stances. For instance, if two adjoining elements are collinear, then the node point is placed at the

grid point without concern. Since minimizing the number of nodes to reduce the computational

effort is desirable, a shape function that accounts for variable positioning of the node is described.

Figure 2 shows an element and the position of the nodal points. The nodes are offset from the

beginning and end grid points by transformed distances a and b, respectively. If the value of a or b

is zero, then the grid and node point are coincident. Let _e represent either of the solution variables

or c)7"/_?n over element e. Also, let _e,1 and _e,2 be the values of the solution variable at the

beginning and end nodes of element e, respectively. The solution variable is given by the linear

function

1 [_e,l(l_b__)+_e,2(__a) ]_e = (1-b-a)
(3.28)

Although not indicated by a subscript e, the values of a and b vary from element to element,

depending on the local geometry and boundary conditions.

• Grid Point

o Node Point

_e.1 _e,2 (xz,y2)(xl,yl)
v v

I I I I

=0 _=a _ =l-b _=1

Figure 2. Linear boundary element definition.
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3.5 Integral Transforms

Definitions of the weight function, the element shape, and the variable distribution function are

now complete. These elements are combined to derive analytic expressions for the integral trans-

forms. Two integrals are computed for each element and source point combination. The integrals

are mapped into the transform variable _ and are given as

0W ss t.l_ 9W ss

7"e----_dF = le JoTe _

re

(3.29a)

fwss_dF l [1wSS-_-d_= ej0

re

(3.29b)

where le is the length of the element. Recall that the distance function and dot product contained in
the fundamental solution and the solution variables have all been previously expressed in terms of

_. The integral expressions are analytically derived for each of the three possible orientations.

3.5.1 Orientation 1 Integrals- In this orientation, the fundamental solution, with the expression

for the distance function given by equation (3.21), is combined with the shape function of equa-

tion (3.28) to produce the integral transforms. The integrals of equations (3.29) are of similar form

'eS  e { )_a+ = -,/-a Te,l[(1 _ b)l{+ _ ,+s]+ +e,2t+['SS-al{ s]:2
4n:(1 - b - a)

(3.30a)

le f_ W ss _°_e d_ =

4-d
4n'(1 - b - a)

+ (3.30b)

The terms 1_s denote component integrals resulting from algebraic manipulation of the integrand.
The superscript ss indicates steady-state integral components and is used to distinguish those

integrals from similar transient integrals presented in the next chapter. The component integrals

are derived analytically as

2I112c+ //"/]I{ s [ ld_- -tan (3.31a)

i_s = -_-=_d_ lnlA + B + C]- lnlAI- BI{s)

I_S=_lnr 2 d_=(l+2_)lnlA+B+C]-2_lnlAl+2@l{S-2

(3.31b)

(3.31c)
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IO lnr 2 1 B+ - B -ssI_S = _ d_=zlnla+ C[-_1_ - CIg s
(3.31d)

i_s_ fl_2d__ 1 B (InlA+B+CI_lnIA[)+
- Jo r 2 _7 2C 2

B 2 - 2AC

2C 2
I_ s (3.31 e)

1_s - fl_3d_ -l(l_ Bl_S-Al_S)-Jo r 2 -C_,2
(3.31f)

3.5.2 Orientation 2 Integrals- In the second orientation, _ • h = 0 and therefore the integral of

equation (3.29a) is zero. The expression for equation (3.29b) is given by equation (3.30b) with the

integrals I_ s and I_ s derived from the distance function given by equation (3.27). The integrals are

given as

(3.32a)

+ ln_ (3.32b)
o) 2

where

(3.33)

3,5.3 Orientation 3 Integrals- As in Orientation 2, Y * h = 0; therefore, the integral of equation

(3.29a) is zero. In the third orientation, the integrand of equation (3.29b) is singular at the source

point, but the integral exists in the Cauchy principle value sense. The derivation is accomplished by

recasting the distance and interpolation functions in terms of a coordinate system originating at the

source point. It is possible for the source point to be located at either of the two nodes on the

element, and the singular integration is similar for both possibilities. A slight change in notation

condenses the equations of the two possibilities into a single expression. Let subscript p denote the

value of the gradient at the source node and let subscript q denote the other node. In this notation,

a and b are the distances separating points p and q from the grid point, respectively. This notation

departs from the previous definition, which associated a and b with the ordering of the element
nodes. In this new definition, the ordering is arbitrary and the equations are applicable for either

node point as source. The integral is given as

[.ws, er__ Fo ,, " ]
Fe °3n -_[_(A1-A2)+-_ A2

(3.34)
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where

A 1 = lnl/el- 1 + (1-a)lnll- al+ alnla I (3.35a)

lA2 = 2(1 - b - a)
(3.35b)

When a = 0, the previous expressions for the coefficients A 1 and A 2 are undefined because of the

natural log function; however, the limiting form is found to be

Al = lnllel- 1 (3.36a)

; i Iln  eA2 2(1 b)
(3.36b)

The numerical recipe is complete. Numerical solutions are generated by looping over all node

points and elements to determine the orientation. Then the appropriate analytic solutions are used to

compute the elements of the global system matrix. Subsequent inversion of the system matrix

produces the boundary solution.

3.6 Numerical Results

The previously developed steady-state algorithm is tested by comparing the numerical solution

to three separate analytic solutions. The first test case is a cylindrical geometry with imposed surface

temperatures. The second test case is a pin-cushion-like geometry formed by the intersection of four

circular arcs. The third test case is a seven-sided nonconvex polygon.

3.6.1 Cylinder- The first test problem is the computation of the temperature distribution in a

cylinder with an inner radius of 1 unit and an outer radius of 2 units, as given by Becker (ref. 5). The

temperatures on the inner and outer radii are 10 and 6, respectively. The exact solution is given by

T =-5.771 lnr+10 (3.37)

The boundary is discretized using 24 elements on the quarter plane: 8 on each of the inner and outer

radii and 4 on each of the remaining two sides. The temperature is prescribed on the inner and outer

radii and symmetry boundary conditions ( _9]'/o3n = 0) are imposed on the two sides. The steady-

state temperature contours of the boundary element solution are compared to the analytic solution

in figure 3. The contours demonstrate the radial symmetry of the numerical solution both on the

interior and along the symmetry boundary. Furthermore, it is seen that the BEM solution compares

very well to the exact solution. The jaggedness of the inner and outer radii curves on the boundary

element side of the plot is a result of the piecewise linear segments used to describe the circle.
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Figure 3. Comparison of analytic and boundary element steady-state temperature contours in a

cylinder.

3.6.2 Pin Cushion- The second test case is found in reference 9; it is a pin-cushion geometry

defined by the intersection of four circular arcs centered at (+1, + 3) with a radius of 3.64, as shown

in figure 4. The geometry contains four comers located at the intersection of the circular arcs.

Potential deficiencies of the offset node strategy are most likely to appear at such surface contour

discontinuities. The exact solution is taken to be

T(x,y) = x 2 - y2 + ln[(x - 2) 2

1

+ (y - 2) 2 ]-2 (3.38)

Contour lines of the exact solution are shown in figure 4. It should be noted that the temperature

field is not symmetric about any axis, consequently, the entire domain must be computed.

The boundary is discretized using 8 elements of equal length on each side for a total of

32 elements. The analytic temperature is imposed on the boundary. The computed surface tempera-

ture gradient is compared to the analytic solution in table 1. Comparisons are made upstream and

downstream (moving counterclockwise) at the four comers of the pin cushion; typically, the errors

in the computed gradients are greatest at the comers. The BEM gradient is within 5 percent of the

analytic flux at the selected points despite the potential inaccuracies generated by offset nodes. A

similar comparison by Kassab and Nordlund (ref. 9) shows their method to produce errors less than

0.1 percent. The improved accuracy of their method results from the use of quadratic elements,

which not only model the surface properties to higher order accuracy but are also able to reproduce

the exact surface geometry; the linear elements used in this study generate error from approximating

the circular arc shape as a series of line segments.

For the solution reported in table 1, the nodes are offset from the end points by 10 percent of the

element length (a = b = 0.1). The solution is fairly independent of the offset distance in the range
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Figure 4. Pin-cushion geometry and analytic temperature contours.

Table 1. Comparison of analytic and BEM temperature gradient at the comers of the pin cushion

test problem

Point Analytic 0T/0n BEM o'-T/oan IErrorl Percent error

Comer 1 upstream

Comer 1 downstream

Comer 2 upstream

Comer 2 downstream

Comer 3 upstream

Comer 3 downstream

Comer 4 upstream

Comer 4 downstream

1.1959 1.1758 0.0201 -1.68

0.9494 0.9094 0.0400 --4.21

-1.2495 -1.2489 0.0006 -0.05

-1.1423 -1.1280 0.0143 -1.25

0.9735 0.9501 0.0234 -2.36

1.6489 1.5978 0.0511 -3.10

-0.6427 -0.6370 0.0057 -0.89

-0.8186 -0.8151 0.0035 -0.43

0.01 < a,b < 0.25. In general, experience has shown that a = b = 0.1 is the most reliable offset value;

all the results reported herein are computed using a 10-percent nodal offset. Also, the integral trans-

forms are computed using 16-point Gaussian quadrature to verify the exact integration equations

outlined previously. The gradient values generated using Gaussian quadrature prove to be within
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4 significant digits of the exact integration results. Additionally, the interior temperature field is

computed based on the surface solution. Temperature contours compare within the plotting accuracy

of figure 4.

The spatial accuracy of the algorithm is measured by computing an error norm for successive

increases in the number of elements. The L2 error norm is shown in figure 5 as a function of the

number of boundary elements for both the boundary gradient and the interior temperature. The error

norms of figure 5 are normalized by the respective values of the error using 16 elements. The results

show the calculation of the boundary gradient to be first-order accurate while the computation of the

interior temperature is second-order accurate. This result is consistent with the accuracy of linear

elements employed in the finite element method.

0.1

0.01
o(2)

0.001 ........ i ....

10 100

Number of Elements

Figure 5. Computed error of pin-cushion solution.

3.6.3 Nonconvex Polygon- The final case is a nonconvex polygon, also extracted from reference 9.

The geometry, which is shown in figure 6, is designed to test a range of comer angles. Also shown

in figure 6 are contours of the exact solution, given by

T(x,y) =sin(x)cosh(y) (3.39)

The boundary is discretized using 26 elements matching that of reference 9. The analytic tempera-

ture is imposed on the boundary. A comparison of the computed boundary temperature gradient is

given in figure 7. The abscissa of the plot is surface length starting at (x, y) = (1,1) and proceeding
counterclockwise around the domain. Also displayed are the grid point locations. The discontinuities

in the gradient values result from the discontinuous change in the surface normal between sides of

the polygon. As seen in figure 7, the computed temperature gradient is within 5 percent of the

19



2.5

2.0

1.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5

Figure 6. Nonconvex polygon geometry and analytic temperature contours.
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Figure 7. Comparison of analytic and computed temperature gradient for nonconvex polygon.
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analytic value on the boundary except at the comer points. The worst comparison is at the 90 ° comer

at (x, y) = (2,1). It is unclear why the maximum error occurs at this location. The solution is not

particularly ill-behaved at the comer, suggesting that the effect is geometry governed. It is believed

that this result is particular to the offset node strategy. In reference 9, the error at the comers corre-

lated to the turn angle with the 117 ° comer at (x,y) = (2,1.5) showing the greatest error; no such

correlation is found in the solution shown in figure 7. In any case, the efficacy of the solution

procedure is demonstrated. Finally, although not shown but worthy of mention, contours of the

interior temperature field compare to the analytic solution within the plotting accuracy shown in

figure 6.

4 Transient Boundary Element Algorithm

The development of the boundary element method for transient heat conduction follows the same

path as the steady-state presentation given in Chapter 3. In principle, the procedure is the same as the

steady-state, however, the mathematics are ubiquitous, and the general procedure is easily obscured

by the mathematical details. Referral to Chapter 3 may illuminate Chapter 4.

4.1 The Boundary Integral Equation

The derivation of the boundary integral equation commences with the transient heat conduction

equation expressed in terms of the thermal diffusivity given by equation (2.9) and repeated as

follows:

rgT o_V2 T = 0 in _ (4.1)
&

with time-varying boundary conditions given by

T = T(t) on F1 (4.2a)

a_ = _(t) on 1"2 (4.2b)

The transient temperature field is split into an initial temperature field, Tl , and a perturbation

temperature, T'. The relationship expressed in terms of functional dependence is

T(xj,t) = T'(xj,t) + TI(Xj) (4.3)

Furthermore, it is assumed that the transient calculation is computed from a steady-state initial

condition, i.e.; V2T1 = 0. Accounting for these relationships, equation (4.1) becomes

aT" aV2T" = 0 in f2 (4.4)
at

21



Equation (4.4) is the basis for the development of the boundary integral equation. Since the

governing equation is written in terms of the perturbation temperature, boundary and initial condi-

tions must be expressed in like terms. The initial conditions are T'(xj, t = 0) = 0 by definition. The

boundary conditions are recast in terms of the perturbation temperature as

T' = T(t)- TI on F1 (4.5a)

a_ _(t)- a--_ on F2
(4.5b)

Next, the domain and boundary error residuals are constructed:

o_ aV2_. (4.6a)
8_ = --_- -

eF1 = T - T + T1 (4.6b)

arl
er2 = a-g- + a-

(4.6c)

where 27 is the numerical approximation to T'. Integrating over the domain, boundaries, and time,

the weighted residual statement becomes

d'r = 0 (4.7)

where W is the interior weight function, W and _ are the weight functions on the boundaries, and

"t"represents the time domain. Up to this point, the procedure is analogous to the steady-state deriva-

tion with the additional dimension of time. The inverse problem is derived by using Green' s theorem

to transfer the Laplacian operator from the temperature field to the weight function. In addition, the

integral of the time derivative of temperature is transformed through the relation

II______ Wd_gdT 7"W[tf-7"weVto-Jt 0 ---_-dT d_-_

vf_

(4.8)

where to and tf are the initial and final time, respectively. The boundary weight functions are
selected in terms of the interior weight function as

-- d-W (4.9a)
W = -a--_-- on r 1

= W on F 2 (4.9b)

22



Furthermore,thenotationisconsolidatedthroughthevariablechangegivenby

_7_overf2 andonF27 -i

[T-Tt onrl
(4.10a)

-_-a aT! on[ & r2

(4. lOb)

After the application of Green's theorem, the substitutions of equations (4.8 through 4.10), and some

algebra, the weighted residual statement becomes

rF vF

(4.11)

In order to remove the second domain integral, the weight function for the transient equation,

denoted as W tr, is selected to satisfy the following:

a_vtr t- otV2W tr = -5(r)f(t) (4.12)
&

The right-hand side parameters of equation (4.12) are Dirac functions,'which represent a unit

impulse forcing function in space and time. In addition, Wrobel and Brebbia (ref. 10) have shown

that

(4.13)

Applying equations (4.12 and 4.13) to equation (4.11) yields the transient boundary integral

equation, given by

~ awtr

f_lzt/tr[ dff2+CpT"p-O_IIwtr-_-dI'dT+aIIT"----_dr'dT=O
-j ,to

f_ vF vF

(4.14)

Other than the domain integral at t = t0, the transient boundary integral equation is identical in form

to the steady-state boundary integral equation (3.14). The differences are the weight function, the

additional dimension of time, and the presence of the domain integral, which appears to prevent
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boundary-onlydiscretization.Nevertheless,thenumericalmethodologyis identicalto thesteady-
statealgorithm.Moreover,it is shownin Section4.3 thatthecalculationof the domain integral can
be circumvented to recover the boundary-only character of the algorithm. Before that analysis, the

transient fundamental solution is introduced.

4.2 Fundamental Solution for Two-Dimensional, Transient Heat Conduction

The fundamental solution satisfying equation (4.12) is given by

-r2 1
wt r = 1 exp H(tf - t)

4rCOt(tf - t) 4a(--_f'- t)
(4.15)

where H(tf - t) is the Heaviside function. The fundamental solution is singular when r = 0 and

t = tf. The directional derivative is given by

I _/.2d-W tr _ -(7 • fi) exp 40_(-Tf- t)
o3n 8_0c 2 (tf - 02

H(tf - t) (4.16)

Both the fundamental solution and its directional derivative are functions of r and ( tf - t ); i.e.,

W tr = wit(r, tf - t). This functional dependence is important in the development of the time-step

procedure presented in the next section.

When computing the transient integrals, it is convenient to transform the fundamental solution to

normalized coordinates. The spatial coordinate is mapped to the parameter _ previously introduced

in Chapter 3. Recall that the distance function, r, is expressed in terms of 4. Time is transformed

into the coordinate 7/, which originates at the source time level, t f, and is scaled by the time

interval ( tf - to). The transformation is backward in time and is given by

tf - t
r/- (4.17)

tf - to

The transform variable r/ranges from 0 at t = tf to 1 at t = t0. The fundamental solution and its
derivative are written in terms of the transformed variables as

wtr (_,l"],t f -to) =
47rot(t f - tO)r1

( -r2({)

exp[ 4o_(-_f _- _O)r/) H(rl(tf -to))
(4.18)

ogwtr(_,O, tf-t o ) -(F._) ( -r2(_) .)

_ ) n(rl( tfOnrl = 8l_z2(tf--'_o)2rl2 exP_4offtf-to)rl
tO)) (4.19)
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The fundamental solution and its derivative are functionally dependent on _, 77, and the time

interval (tf - tO) from the temporal coordinate transformation.

4.3 Time-Step Procedure

Consider the boundary integral equation expressed over the temporal domain from tO to tf,

given as

N

-f _vtr(r, tf-t) d_-2+CpT"p -6_fff _wtr(r, tf-t)-_dFd'c

f2 to F

+ o[ftf t ~ o3wtr(r, tf - t)
"It0 JT _ dFd't" =0

F

(4.20)

The functional dependency of the fundamental solution is included in the previous expression to

accentuate the source point, which is always located at tf. After the boundary is discretized, the

integral equation can be written in terms of coefficient matrices of the temperature and gradient

vectors. The form of the equation is dependent on the order of the temporal accuracy. For discussion

purposes, the temporal accuracy is assumed to be O(1) in order to simplify the equations. In practice,

the algorithms presented in this paper employ a linear interpolation function, the details of which are

presented in Sections 4.4 and 4.5. As before in the steady-state analysis, the notation is switched to

matrix form for compactness. Equation (4.20) becomes

Dj(Tj(to),t f - to) + Hjk(t f - to)Tj(t f ) + Gjk(t f - to)Qj(t f) = 0 (4.21)

where Hjk and Gjk are the coefficient matrices, identical in function to those of equation (3.16),

and Dj is a vector containing the domain integral, which is a function of the temperature field at

tO and the time interval (tf - to). The parenthetical expressions after Tj and Qj indicate time level,

while those after D j, l-ljk, and Gjk denote functional dependency. As will be shown later, the
temporal portion of the integral transforms admit analytic solutions that are functions of the time

interval ( tf - tO). Thus, the coefficient matrices D j, I-Ijk, and Gjk are denoted as functionally
dependent on the time interval. Although not explicitly indicated, the matrices are also functions

of the geometry.

Wrobel and Brebbia (ref. 10) present two methods for advancing the boundary integral equation

in time. In the first approach, the time integration is initiated from the previous time step; this pro-

cess requires domain integration and, consequently, a domain grid. In the second approach, domain

integration is avoided by initiating the integration for every time step from to . The two approaches

compel different storage and computation strategies. Both methods are now discussed.

Let the time domain be divided into intervals with the time at the end of each interval denoted by

tm . In the first approach, the solution from tm_ 1 tO t m is given by
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Dj(Tj(tm_l ),tm - tm_l ) + Hjk(t m - tm_ 1)Tj(tm) + Gjk(t m - tm_ 1)Qj(tm) = 0 (4.22)

Equation (4.22) is essentially a rewrite of equation (4.21) with a change in the time interval from

(tf -to) to (t m -tm_l). To advance the solution in time, the coefficients in Hjk and Gjk are
computed based on the local time step, (t m - tin_ 1). The domain integral is computed based on the

temperature field at the previous time step. For varying values of the time step, Hjk and Gjk need

not be retained. If the time step is constant, however, the coefficient matrices are a function of a

fixed geometry and a fixed time step; therefore, they can be computed once and stored. This

procedure is very efficient except for the requisite domain integration.

In the second method, domain integration is avoided by writing equation (4.21) from t O to tm .

At the initial time, Tj (t 0) = 0 by definition (recall that Tj contains the perturbation temperature and
not the absolute temperature, which can be nonzero), consequently, the domain integral is zero.

Equation (4.20) becomes

m m

ZHjk(tm - ti_l)Tj(ti) + ZGjk(tm - ti_l)Qj(ti) = o
i=1 i=i

(4.23)

The summation appearing in equation (4.23) results from dividing the time integral into intervals

corresponding to the time-step distribution. The integrals are computed using the transient history

of the dependent variables. The coefficient matrices must be calculated for every combination of

( t m - ti) for every time step. For example, assume the solution has been computed up to time t1.

To advance the solution to time t2 , coefficient matrices must computed for time intervals of (t 2 - to)

and (t 2 - tl). The terms of the first summation of equation (4.23) are

2

Z I'Ij k (t2 - ti-1 )Tj (ti) = I-Ijk (t 2 - t0)Tj (t 1) + I'Ijk (t 2 - t 1)Tj (t 2 )
i=1

(4.24)

At the next time step, the matrices must be computed for time intervals of (t 3 -to), (t 3 -tl), and

( t 3 - t2). The terms of the first summation are

3

Z I'ljk (t3 - ti-1 )Tj (t i ) = I'Ijk (t 3 - t o )Tj (t 1) + I'Ijk (t 3 - t 1)Tj (t 2 ) + I-Ijk (t 3 - t2 )Tj (t 3)
i=1

(4.25)

Thus, for a calculation of mma x nonuniform time steps, mma x (mma x + 1)/2 coefficient matrices

must be computed to cover the possible combinations of ( tra - ti) for 0 < i < m and 1 < m < mma x.

In general, the value of ( tm - ti) need not repeat itself, therefore, I-Ij, ( tm - ti) and G jk (tin - ti ) are

never repeated. Storage is minimal because only one matrix at a time is needed, but the amount of

computation is high.

Matters are simplified somewhat for a constant time step because the number of matrix calcula-

tions is reduced to mma x • Furthermore, the matrices, which are a function of integer multiples of the

time step, are computed once and stored. For a constant time step, equation (4.23) becomes
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m m

E Hjk((m - i+ l)At)Tj(ti) + E Gjk((m - i + 1)At)Qj(ti ) = 0
i=1 i=1

(4.26)

Unfortunately, because the origin of the source point is always at tm , the matrix vector multiplica-

tions of Itjk((m - i + 1)At)Tj(ti) and Gjk((m - i + 1)At)Qj(ti) are never repeated. For example, at

the second time step, Hjk(2At) is multiplied by Tj(t 1), while at the next time step it is multiplied

by Tj (t 2). Consequently, there is no possibility for computational and memory savings by storing
intermediate vector-matrix multiplication results.

Wrobel and Brebbia (ref. 11) recommend the first method, which requires domain discretization,

for most applications. Although the first method has the overhead of the domain integral, the effi-

ciency is independent of the number of time steps. In the second method, on the other hand, the

efficiency decreases as the number of time steps increases; the efficiency of the second method

quickly falls below that of the first as the number of time steps is increased. Yet, it is the author's

opinion that the primary benefit of using the BEM is the boundary-only discretization. If the domain

must be discretized, perhaps the finite element method is better suited since it is conceptually less

complicated and is amendable to increases in fidelity such as modeling nonlinearity. In light of this

philosophical perspective, the transient algorithm presented in this paper employs the second method

to exploit the advantage of boundary-only discretization. Of course, these brush strokes are broad,

and certainly there may be compelling reasons to use a BEM that requires domain discretization. It

has to be the engineer's discretion when to use a wrench and when to use a ratchet.

4.4 Element Shape Functions and Integral Transforms

This section presents the numerical details of the transient boundary element algorithm. The

transient algorithm retains the features developed for the steady state: a linear boundary element

shape for efficient coupling with CFD, variably offset nodes for unique definition of the node

normal, and a linear spatial distribution of the dependent variables. These components are

incorporated into the boundary-only time-step procedure introduced in the previous section. The

interpolation function is modified to linearly approximate the dependent variables over space and

time. The interpolation function is inserted into the boundary integral equation to derive the integral

expressions. The integral transforms over time and space do not admit a complete analytic solution

except in the instance of a singularity. The integral transforms of the singular and nonsingular types

are addressed separately.

The boundary integral equation for the boundary-only time-step procedure is given as

tm _ tm . o3wtr
CpTp-all Wtr(r'tm-t) On

t o F t0F

(4.27)

where tm is the time at which the solution is to be computed. It is assumed that the solution has

been previously computed up to time tm_ 1. As outlined in the previous section, the domain integral

vanishes because the integration always commences from tO. The time intervals are not necessarily

constant; that assumption will be made later in the derivation. The boundary is divided into elements
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and the time integration is divided according to the time-step distribution to yield the double

summation in the boundary integral equation,

m ti ~i rn ti

CpZp-OtE _ E_wtr(r'tm-t)_ dFd_+O_E _ E_i°wtr ---_(r,t m - t)dF d't = 0

i=lti_l e Fe i=lti_l e Fe

where Te is the distribution of T over element e from time ti_ 1 tO t i , and oT/"//On is defined

likewise. Isolating an individual term from each of the double summations reveals the two integral

transforms that comprise the crux of the numerical solution,

(4.28)

t) dl-" dr (4.29a)

_il_wtr(r, tm-t)--_-dT'dT;

re

(4.29b)

The solution of the integrals is different for singular and nonsingular integrands. In the nonsingular

case, a mixed analytical-numerical solution is prescribed. In the singular case, an analytic series

solution is derived.

4.4.1 Nonsingular Integrals- In this section, the equations for the integral transforms of equa-

tions (4.29) are presented for the case of a nonsingular integrand. As will be shown, the temporal

integration admits an analytic solution, whereas the spatial integration is perfo.rmed numerically.

First, the interpolation function of the dependent variables is developed. Let _e represent the distri-

bution of either T or dT/dn over element e from time ti_ 1 to t i. The four-point basis function is

given as

1 {Zi[(l_b_4)_e,l(ti_l)+(__a)_)e,2(ti_l) ]
(1 - b - a)

+ (1- Zi)[(1- b - _)_e,l(ti)+ (4 - a)_e,2 (ti)]}

(4.30)

where Zi is a local time variable that ranges from 1 when t = ti_ 1 to 0 when t = t i. The parenthetical

expressions after _e,j indicate time level. The subscripts 1 and 2, first introduced in the steady-state

interpolation function, indicate the two nodes of each element. Equation (4.30) is a bilinear function

over space and time expressed in terms of the local time variable, Zi, and the spatial transform

variable 4- The interpolation function is more suitably expressed in terms of the global time

variable r/ given by equation (4.17), which in this usage ranges from 1 at t = tO to 0 at t = tm .

Equation (4.30) becomes
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_ie = 1 1 { _(tm _ti)[(l_b)_e,l(ti_l)_a(ge,2(ti_l)](1 - b - a) (t i - ti_ ! )

+(t m -ti-1)[(1-b)Oe, l(ti)-aOe,2(ti)]

+ (t m -to)[(1- b)Oe,l(ti_l)- a_e,2(ti_l)-(1- b)Oe,l(ti)+ aOe,2(ti)]r /

+[(t m -ti)(@e,l(ti_l)--Oe,2(ti_l))--(tm --ti-1)(_)e,l(ti)--_,2(ti))]_

+('m +ae,:(,,-,)+ae,,(t/)-ae,:(t/)).} (4.31)

Since the interpolation functions are expressed in terms of _ and 77, they are combined with

the transformed fundamental solution given by equations (4.18) and (4.19). The integrals of

equations (4.29) are mapped into (i-r/) space to yield

W tr r

Stti I _i °_¥tr(r'tm-t) dFd'C=On(tm---to)drT(ti)lefr/(//-1 ) f 17"e(_' r/)egO0 ( (¢)'r/'tm-tO) dCdr/On
i-1

re

(4.32a)

Ifi_l I wtr (r, tm - t)-_ -dr'd'C -

re

-i

le fO(ti-1)I1wtr'r"" -to) 3Te (¢' r/) dCdr/
(t m --- tO) dr/(ti) 0 _ (_)' r/' tm On

(4.32b)

The integrals are functions of _, 77, the known boundary solution for t < ti_ 1, the boundary

conditions, and the unknown quantities at t = ti. The expression does not admit analytic solution

over space and time, but manipulation of the temporal integral is fruitful.

The multiplication of the fundamental solution (eqs. (4.18) and (4.19)) and the interpolation

function (eq. (4.31)) produces three core time integrals of the form

frT(ti- 1)+ expl 4a_-) I
dr/ for k = 0, 1, 2

Jrl(ti ) to )
(4.33)

The values of 77 at the limits of integration are found by applying its definition given by

equation (4.17). Furthermore, the time integral is split into two parts to yield

tm -ti-1 2 "_

S r/(ti-l) 1 (-r2(_) ]dr/= f tm-tO lexp( --r (__.)) Jrl(ti) r/k exp/4a_-_m 7/0 ) do 77 _40tr/(tm-tO)

tm - t_______i )_ I;m-t0 +exp -r2(_) .40_r/( tm - tO)
fork=0,1,2

(4.34)
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Both of the integrals on the right-hand side of equation (4.34) are of the same form, and a general

solution appears to be possible. Yet, the time difference in the exponential function is (t m -t O) while
the time difference in the numerator of the upper limit of integration is ( tm - ti); this fact suggests

that the integral must be computed for all combinations of (t m - ti) and (tm - t0) for 0 < i < m and

1 < m < mma x. Fortunately, the integrals can be transformed to yield standardized integration limits

of 0 < r/< 1. The results for each of the three types of integrals are

I;m-t0 exp( -r2 ) tm - ti tl ( -r2tm-ti dr/= _ exp --- )dr/4a(t_ --t 0 )7"/J tm -t o Jo ( 4ot(t m -t i )17
(4.35a)

tm-ti'( 2 ) =rllexp/. -d ,ldr/ (4.35b)
ftm_tO lexp[ --r dr/
dO 17 _,4a(t m - to)r� aO 77 _.4a(t m - ti)r/)

tm-t-----L+l-r2)tm-tofll¢-r2 lexp
..... exp --- dr/ (4.35c)

dr/ jor/2 _4a(tm_ti)r/; m-tO 40_(t-_ _ t0)r / tm - ti

Notice that the integration limits and the time difference in the exponential function have been

standardized. Combined with the spatial integration, six component integrals result. The integrals are

of standard form, and for a constant time step, are computed once, stored, and used repeatedly. The

six integrals are denoted by the superscript tr to distinguish them from the steady-state integrals;

they are given as

S;£e(++)I tr xp dr/
1,i =

I tr rl 1,1. ¢_ri2(_)) d_2'i : J0J0qexp t 7/" dr/

itr = fl fl lexpf ]dr/
3,i d0J0r/ [ /7 )

I lr fl fl exp(-r/2__(¢)Jar/d 
4,i = JOdO r/ _. 17 J

it r r 1 1"1 1 (-r/2(_) / d{5,i = jo£Texpt -_ dr/

lt6r'i : JoJoTeXpt de

(4.36a)

(4.36b)

(4.36c)

(4.36d)

(4.36e)

(4.36f)
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where

ri2 (_) - r2 (_) (4.37)
4ot( tm - ti )

Furthermore, the time integration is performed analytically to yield

1 2
Itr=l,i IoE2(r/ (_))d_

(4.38a)

2,i _E 2 ri2(_) d_ (4.38b)

1 2

Itr=3,i f0El(r/ (_))d_
(4.38c)

l_r,i = _E 1 r/2(_) d_ (4.38d)

I 'r fl ,I exp(ri2(_))d_
5,i = dO r/z (_)

(4.38e)

6,i = exp _) d_ (4.38t)

where E1 and E2 are exponential-integral functions whose expressions are given in reference 12. The

integration over _ is performed numerically using Gaussian quadrature with the distance function

given by equation (3.21).

Summarizing up to this point, interpolation functions that are linear in both time and space are

given for the dependent variables. The interpolation functions are expressed in terms of the trans-

form coordinates _ and 7/. The multiplication of the interpolation functions to the kernels of the

integral transform (i.e., the weight function and its derivative) yield three core temporal integrals as

functions of r/. The limits of integration and the time difference in the exponential term of the core

integrals are standardized. These three core time integrals are combined with the spatial integration

to produce six component integrals in space and time. The temporal integration is performed analyti-

cally and the spatial integration is computed using Gaussian quadrature. Utilizing the definitions of

the six integrals, the expression for the integral transforms of equations (4.29) are
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le 1
R. -(tm ti) (l-b)= . - (ti_ 1 ) - a (ti_ 1 )

4re(1 - b - a) t i - ti_ 1i=1

+ (1-b)--_-(ti_l)-a--_(ti_l)-(1-b)-_-_-(ti)+a--_(ti)[(tm-ti-1)I{, r-l-(tm-ti)l_,r]

+{(tm-ti)[--_-(ti_l)--'_-_-(ti-1)l-(tm-ti-l)I-_-(ti)--'_(ti)l}(l_ri-l-It4ri)

-1 ?_ O_e,1 °_e 2 ~ _a___(ti _(tin trLi-1 ) 2,i-1

(4.39a)

= 81r--_---b _ a) _ t i - ti_l ' "

11[<i_1"r+(tm-ti-1)[(1-b)Te,l(ti)-aTe, 2(ti) (tin _'_-/_1)(tm-t i )

+[(1- b)7"e,l(ti_l)- aT"e,2(ti-1)-( 1- b)Te, l(ti ) + aTe,2(ti)](I_, r-1 - It3r,i)

[" ltr

+{(tm -ti)[Ze,l(ti-' )- _re,2(ti-1)]-(lm-ti-1)[ _i'e'l(ti)- Ze,eCti)]}/L(',_:L1)6'i-1 ,,r]6,i

(tm - ti)

G
_ aTe 2(ti)] It4ri 1- Itr ] I+[-Te,l(ti_l)+ 7"e,2(ti 1)+ Te,l(ti)- , ( ,- 4,iJ

3
(4.39b)
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ZC ltr trNotice that the integrals 1j,r. appear in pairs of the form _ 1 j,i-1 -c2I),i) because of the splitting
of the integration limits shown in equation (4.34). Also, terms of the form (t m - ti) result from the

standardization given by equation (4.35). The equations are tedious and the notation is abstruse, yet

the concept is straightforward and should not be lost in the details of the algebra. The equations are

obtained simply by multiplying the interpolation function by the transform kernels.

Equations (4.39) are valid for any distribution of the time steps. Recall, though, that if values of

tm are selected arbitrarily, then the integrals 1_,r must be calculated for all possible combinations of

( tm - ti) for 0 < i < m and 1 < m < mrnax. If the time step is constant, however, then ( ti - ti_ 1)

becomes At and (t m - ti) becomes an integer multiple of At. The integrals need to be calculated

only mma x times. Furthermore, because the influence coefficients are a function of a constant At,

often only one matrix inversion is required for all time steps. Extracting out At, the integrals over
time are

m t. i

f f: wtr (r, tm - t)-_ dT.dF =
Ie

4n:(1 - b - a)

+(m-i+ I)(l-b)CT_f'l(ti)-ona--_(ti) (l_ri_1- Itr3,i)

+I(l-b)-_-(ti_l)-a_(ti_l)-(l-b)-_-(ti)+a--_(ti)][(m-i+l)l_r,i-1-(m-i)l'r,i]

°_el °_e,l

+{(m "i)[----_--(ti_l)--_(ti_ 1°_e'2 )]-(m-i+ 1)[--_---(ti) ---

+

(4.40a)
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V

onwtr (r, tm - t) -( _ • n )le [

f2I'i
; i=1 ti-1 N 81"g_((_--V-- a)i=1

[- ltr I tr ]

+(m-i+ 1)[(1-b)7"e,l(ti)-aTeg(ti)B] '5,i-1 5,i J' IJL(m -- i + 1) (m- i)

+[(l_b)_.e,l(ti_l)_a_.e,2(ti_l)_(l_b)_.e,l(ti)+aTe,2(ti)](l_,i_ l- tr - Itr3,i )

._ I tr

+ {(m- i)[Te,l(ti-1) - ]'e 2(ti-1)] -(m- i + 1)[7"e l(ti )- ]'e 2(ti)]}l, 1"
, , , L_rn - )

,,r]6,i

(m - i)

+[_Te,l(ti_l)+ Te,2(ti_l)+ Te, l(ti)-aZe,2(ti'l[l trl]_4,i-1 - 1tfi) ]

(4.40b)

4.4.2 Singular Integrals- The previous section develops expressions for the integral transforms

when the integrand is nonsingular; this section presents expressions for the integral transforms for a

singular integrand. The singularity occurs when the source point lies on the element defining the

path of integration. Because the distance function simplifies in this orientation, the integral transform

admits a complete analytic solution over time and space. Furthermore, since the source point lies

along the path of integration ( _ • h = 0), the integral of equation (4.29a) is zero.

The singular integral requires an interpolation function for 3"T//3n. It is convenient to redefine

the spatial transformation such that the origin lies on the source node point. The range of the trans-

formation becomes -a < _ < 1 - a, where a is the offset distance of the source point. The notation

in this section is analogous to the notation used for Orientation 3 of the steady-state transform of

Section 3.5.3. Letting subscript p denote the source point and q denote the other node point, the

interpolation function for O_et/_ is

3n (1-b-a) Zi (1-b-a-_) (ti_l)+_ (ti-1)

(4.41)

In the new transformation, the second node point is located at _ = 1 - a - b.
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Similar to thederivationin theprevioussection,multiplicationof the interpolationfunctionto
thetransformedfundamentalsolutionproducescomponentintegralsovertime andspacelike the
integralsof equations(4.36).With therevisedspatialtransformation,thecomponentintegralsare

I tr fl-afl (_ri_)ldr/d _ (4.42a)1,i = a-a jgxp_,

Itr a d_ (4.42b)2,i = exp dr/

It r I"l-a fll (--r/2(_))_
3,i=La j0-_exp_ _ jar�de (4.42c)

I tr = fl-afl _ exp(_r/2_.(¢ )/dr/d_ (4.42d)
4,i d-a J0 77 \ /7 J

Because only one of the integral transforms is nonzero, only four component integrals are needed (as

opposed to the six component integrals for the nonsingular case given by equations (4.36)). Each of

the four integrals admits an analytic solution over time and space. The derivation of I_,ri is presented

in detail as an example. The other three are derived similarly, but, for brevity, only the final expres-

sions are given. With the distance function explicitly expressed in terms of _ I tr, 1,i is given by

I tr I'1 l'l-aex (-fli_2 _ d_ (4.43)
'.i:JoJ- 77 ) dr/

where

fli - le (4.44)
4a( tm - ti)

The integral is singular at the origin. An additional transformation to polar coordinates allows

the Cauchy principle value to be computed in the limit as the radius goes to zero. The domain is

divided into two regions along the r/ axis. A separate polar coordinate transformation is prescribed

for each region, as shown in figure 8. In each region, the limits of integration are easily determined

by splitting the integral in two at the comers of _-r/space; i.e., at (_, r/) = (1 - a, 1) and at

(_, r/) = (-a, 1). Both regions are transformed to polar coordinates and subdivided in two to

yield four separate integrals
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I tr = exp Z dZ dO
1,i sin 0

+ It _ fsi@O exp/-fli_cOs2 0
an-I (l___la)dO _ sinO _d_dO

+fta_-t@f;-_s_exp[-/3iAsin2qt)Jo-'o \ _ _,dA,dqt

7r a • 2

+J'ta2-n_l fs_n_exp(,-fli_'sin'llIA, dZdlll)(a)JO _. cos_

(4.45)

 :1i T= -/l sin _ _ = _ cos 0

77,= ,_ cos gt / 77= XsinO

gt

7=0 --

=-a _ =0 _ =l-a

Figure 8. Singular integration domain and polar transformation.
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Theinner integrationover Z is performed analytically to yield

itr _'tan-l(l_--la)-sin20 [exp(-fli(1-a)cosO)(fli(1-a)cosO _-ll-lldO
l,i = Jo t2 c0s4 0 sTn-0 jr. G

fq-_r -sin 2 0 F (-flicos 2 0/,ico, 0+1/_1]sin 2 0

ftan-l(a)-cos2 I/f F (-flisin2111_(flisin2v)l
.... exp -- . +1 -1 dN+_o #sin44 t _os_J_co_ (4.46)

rc _cos2N[expl__iasi____nllf.li_iasin______.ll_l]d _+Ita2n-l(a)_2sin41//L \ cosl]/ j\ cos_

Each of the four integrals of the right-hand side of equation (4.46) is mapped to a dummy variable,

u, through separate substitutions. Letting u = tan 0/(1 - a), u = tan O, u = cot N, and u = cot N/a for

the first through fourth integral terms, respectively, yields

12E 1I 'r =-(1- a) 3 f(l---_ u--w exp + 1 - 1 du
1,i Jo /_¢

-_ U2

-Jl@a _/2FexL P_'-_'-)_u-2"('-_i_(fli +1)- 1] du

- I_ _/22[exp(@2/)(5 + 1) - 11 du
a

(4.47)

3 f_12 u2 1]-aJ0a -_-i2[exp(-_-L)(_+l)- du

The first and fourth integrals on the right-hand side of equation (4.47) are of the same form, and the

second and third integrals are of the same form. The solutions of the third and fourth integrals are

addressed with the knowledge that the solutions of the first and second are obtained by substitution

of (1 - a) for a. The fourth integral of equation (4.47) yields to analytic solution. Furthermore, the

solution is expanded into series form; the result is

37



au2E l l lexp a2 i (l+ll+aE2 a2 i -a__ e_ +1-, _u-- a_# a_i

11 _ (-1)kflka2k+l
=_L_o (k + 2)k' +aE2(a2fli)]

(4.48)

The third integral does not readily submit to analytic solution. Nevertheless, the integrand is

expanded into series form and each term is integrable. The Cauchy principle value is found for

each term at the upper limit of integration; the result is

_u2 - " t" 11 7_ " l"k-l'_k-1
-;i_-/2[exp(_)(_--_+l-I du=LimflS" ,_.-_-21)--pi- dur_3ak='--'lU_'_(k + 1)(k- 1)!

(-1)k+1,6/_ Ir= Lira 2 2k+l(2k+l)(k+2)k! -
7--..> k=Ou 1

a

(4.49)

The two series expansions found in equations (4.48) and (4.49) are combined to yield

1 _.(-l)kflka2k+I _ (1)kflika2k+l 2 _.(-l)kflka2k+l

_ __ +_o__;_,--3_ _ +i)_,
(4.50)

Since the two series solutions can be combined, the sum of the solutions of the third and fourth

integrals renders two terms: a series expansion given by equation (4.50) and an exponential integral

function. The first and second integrals combine in like fashion. Summing all four integrals, the

solution for I tr1,i is

a 2 2 (-1)kflk[ (1-a)2k+l+a2k+l ]

l{ri=_-E2((1-a)2fli)+ "E2(a fli)+3k= 0 (2k + 1)k!
(4.51 a)

Similar derivations for ! tr I tr I tr2,i, 3,i, and 4,i yield

i tr (1-a)2E2((1-a) 2 ] a2E ra2a/a i)+ 1 Z_ (-1)kflk[(1-a)2k+2
k=0

_ a 2k+2 ]
(4.51b)
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 _1,k a,2k+1 2k+ ++ (4.51c)

,tr= _z_.l I(1 - E2(( 1 - a)2 fli))-(1- E2((1- a) 2 fli ))]
4,i Z#i L\

(4.51d)

The series shown in equations (4.51) are convergent for fli < 1. In practice, the element is broken

into subelements such that the length of the subelement containing the singularity yields fli = 0.8.

For fli = 0.8, the series converges to sufficient accuracy in six terms. The remaining subelements are

nonsingular and are integrated numerically as in the previous section.

When a = 0, the expressions of equations (4.51) are undefined; however, the limiting form is

found to be

it r 2 '_ (--l) kflk

1,i = E2 (_i) + -_ k___(2-_" 1-'_!
(4.52a)

1E la _+ 1 _-, (-1)kfl kI tr
"-'; 2 k_ i ] _ Z-, ' (--_+ i-_.2,i =
"e _ k=0 _ "

(4.52b)

1)k k
itr 1- g2(fli) _" !=1)_ ]_t

3,i - fie t- k_-_(2k + 1)(k + 1)!

(4.52c)

Itr (1- E2(fli))

4,i - 2fl i

(4.52d)

The analytic expressions given by equations (4.51) and (4.52) are compared to numerical integration

in figures 9 through 12. The numerical integration is performed using two-dimensional Simpson's

Rule with 109 functional evaluations. The analytic expressions are seen to reproduce the numerical

values over a range of fli and a. Recall that the analytic expressions are not employed for /_i > 0.8

tO ensure convergence of the series solution. The only discrepancy between the analytical and

numerical solutions is for l_ri at small values of/3 i , as shown in figure 11. This difference is caused

by error in the numerical solution; the Simpson integration requires extremely fine spacing to

resolve the singularity of the integrand.
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Figure 9. Comparison of analytical to numerical solution of transient, singular, component

integral I tr1,i.
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Figure 10. Comparison of analytical to numerical solution of transient, singular, component

integral I tr2,i.
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Figure 11. Comparison of analytical to numerical solution of transient, singular, component
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Figure 12. Comparison of analytical to numerical solution of transient, singular, component

integral l_ri .
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With IJri defined, the expression for the singular integral transform is

!i_=lftiwtr(r,tm-t)ti_l dzdF

le
4zr(1 - b - a) i_ 1"=tt" _lti_l (1-b-a)-(tm-ti)---_--(ti-1)+(tm-ti-1) (ti) I_ri-l-I_ri)

+(1-b a) (/i-1) °_e'P(ti) (tm-ti-ll_ltrl,i-1_ _(tm _ti)l,,, ]tr]

+{(tm --ti)E-_(ti-1)---_(ti-1) --(tm --ti-1)I-_(li) °_'q (ti)])(lt4ri-l -lt4ri)

~ ] ) 2,i-1 ]r o_. o_ e O_e. __(ti) [(tin ti_l,[tr (t m ti)l_ri]+ _v-e,p (ti_l) + v'e,q (ti_l) + _,e (ti)_ a _ _ _

(4.53)

4.5 Numerical Results

The transient algorithm previously developed is tested against three analytic solutions. All three

test cases are simple one- and two-dimensional geometries for which transient analytic solutions are

found in reference 13. The first case is the temperature decay in a one-dimensional rod with an initial

linear temperature distribution. The second case is the temperature decay of a two-dimensional

plate initially at uniform temperature. Finally, the third case is a one-dimensional rod with a time-

dependent fluctuating temperature boundary condition.

4.5.1 One-Dimensional Rod- The first test case is a one-dimensional rod of length I with an initial

linear temperature profile. The initial and boundary conditions are given by

Initial conditions: T(x, t = O) = (1 - x)/l for 0 < x <_l

Boundary conditions: o3T/On(x = 0,t) = 0 for t > 0

T(x = l,t) = 0 for t > 0

The domain is discretized using 11 elements along the length of the rod and 5 elements of length 0.1I

in the second dimension. Symmetry boundary conditions are imposed along y = 0 and y = 0.5/to

simulate a one-dimensional problem. Temperature values at five select points along the length of the

domain are compared to the analytic solution in figure 13. The abscissa is time nondimensionalized

by the thermal diffusivity, a, and the length of the rod. The boundary element solution reproduces
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Figure 13. Comparison of analytical to boundary element transient temperature profiles in one-
dimensional rod.

the analytic solution throughout the domain and for all time. The error, expressed as a percentage of

the difference between the analytical and numerical solutions, is plotted in figure 14. The greatest

error occurs at the initial time step; the cause of this effect is discussed in the next section. After the

initial time step, the error decays to within 0.3 percent of the analytical solution.

4.5.2 Two-Dimensional Plate- The second test case is a finite square with unit initial temperature.

At time zero, the boundary temperature is instantaneously dropped to zero. Heat then flows out of

the domain and the temperature drops to zero in the steady state. For this simulation, the boundary

is discretized using 11 equally spaced elements per side. The square ranges from (x,y) = (0,0) to

(x,y) = (l,l). Symmetry boundary conditions are imposed along x = 0 and y = 0. The temperature

is set to zero on the remaining two sides. In figure 15, the boundary element solution is compared

to the analytic solution at five locations inside the domain. The points that are plotted, although

selected for broad representation of the solution, are completely arbitrary and have no correspon-

dence to any type of interior discretization. Any other five points could easily have been selected.

Except for the first two or three time steps, the boundary element and analytic solutions are nearly

identical to plotting accuracy. The error of the solution is presented in figure 16. Similar to the

results presented in figure 14, the greatest error occurs at the initial time step. The error is slowly

rising in time past 0.2 because the error is expressed as a percentage of the analytical solution, which

is approaching zero. Thus, the percentage error is increasing even though the absolute error is

decreasing.
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Figure 14. Error of boundary element temperature profiles in a one-dimensional rod.
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Figure 15. Comparison of analytical to boundary element transient temperature profiles in a two-

dimensional plate.
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Figure 16. Error of boundary element temperature profiles in a two-dimensional plate.

The slight deviations near time zero are explained by recognizing that the heat flux at time zero

is infinite because of the instantaneous temperature drop. Consequently, the initial temperature

gradient is computationally undefined which undermines the ability of the linear shape function to

describe the thermal gradient over the first time step. This computational obstacle is circumvented

by dropping the order of the temporal shape function over the first time step. Thus, the first time step

for the transient calculation employs a constant temporal shape function while all subsequent time

steps use a linear. As a result, the first time step has a reduction in accuracy as compared to the

remainder of the computation. The effects of the accuracy reduction, however, do not propagate in
time.

4.5.3 One-Dimensional Rod with Fluctuating Boundary Condition- The final test case is a one-

dimensional slab of length I with a time-dependent, fluctuating boundary condition. The initial and

boundary conditions are given by,

Initial conditions: T(x,t = 0) = 0 for 0 < x < 1

Boundary conditions: T(x = O,t) = 0 for t > 0

T(x = l,t) = sin(lOzrt + zr / 2) for t > 0
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Thedomainis discretizedusing10equallyspacedelementsoneachsidealongthelengthof the
domainplus4 additionalelementsin theseconddimension.Theboundaryelementsolutionis
comparedto theanalyticsolutionat 3 locationsalongthelengthof thedomainin figure 17.
Onceagain,theboundaryelementsolutionis identicalto theanalyticsolutionwithin plotting
accuracy.
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Figure 17. Comparison of analytical to boundary element transient temperature profiles in one-

dimensional rod with fluctuating temperature boundary conditions.

The only marked error occurs at the first time step because of the constant temporal discretization

mentioned previously. The L2 error over all space is shown in figure 18 as a function of time and the

time step. The error fluctuates at the same frequency as the boundary condition forcing function.
This result is consistent with finite difference analysis, which shows the truncation error to posses

the same growth property as the exact solution. (See ref. 14.) In this case, the temperature field is

continually perturbed by the boundary condition, and, therefore, the solution and the error do not

decay in time. Furthermore, the error decreases as the time step is decreased. The values of the peaks

of the fluctuating errors are plotted as functions of the time step in figure 19. The slope of the curve

shows the algorithm to be second-order accurate in time. Moreover, since the same interpolation

function as the steady-state algorithm is employed, the algorithm retains second-order spatial

accuracy.
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Figure 18. Error of boundary element transient temperature profiles in one-dimensional rod with

fluctuating temperature boundary conditions.

10 -I

10 -2

@
L,
L,

!

10 -3

4
10 ........

0.001 1

/
0(2)

i i i i Lll a i i i _ i_,1

0.01 0.I

Time Step
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5 Conclusion

Two-dimensional, steady-state, and transient boundary element algorithms are designed for

coupling with CFD flow solvers. The algorithms feature linear boundary elements for efficient

coupling with discretized fluid domains that typically assume linear segments between grid points.

Furthermore, the solution variables of T and 3T/tgn are approximated using a linear interpolation

function with offset node points; the offset nodes are implemented to uniquely define the nodal,

element, surface normal.

Analytic expressions for the requisite boundary integral transforms are derived for the steady-

state algorithm. The analytic solutions are possible for both singular and nonsingular integrands

because of the simplifications that result from using isoparametric linear shape functions. The

steady-state algorithm is used to compute a variety of test cases that admit analytic solutions. The

boundary element algorithm reproduces the analytic temperature to second-order spatial accuracy.

The transient algorithm incorporates the transient fundamental solution approach. The boundary-

only character of the solution procedure is maintained by originating the integral transforms from the

initial time. The dependent variable interpolation functions are linear in both space and time. A

series solution of the singular integral transform is derived and verified by comparison to numerical

integration. The remaining integral transforms are computed using Gaussian quadrature. The

transient algorithm is shown to be second-order accurate in the computation of test cases for which

analytic solutions exist.

The verification tests presented in this publication indicate that the BEM algorithms developed

herein are suitable for accurate modeling of linear heat conduction. The algorithms are tailored for

efficient and conservative coupling to CFD discretizations through the use of linear elements.

Further modifications to the codes may be needed to incorporate boundary conditions required for

coupling to a CFD code.
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